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Abstract We study the question of whether a composite structure of elementary particles,
with a length scale 1/�, can leave observable effects of non-locality and causality viola-
tion at higher energies (but � �). We formulate a model-independent approach based on
Bogoliubov-Shirkov formulation of causality. We analyze the relation between the funda-
mental theory (of finer constituents) and the derived theory (of composite particles). We
assume that the fundamental theory is causal and formulate a condition which must be ful-
filled for the derived theory to be causal. We analyze the condition and exhibit possibilities
which fulfil and which violate the condition. We make comments on how causality violating
amplitudes can arise.
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1 Introduction

The standard model (SM), a local quantum field theory, has served so far as a very good de-
scription of elementary particle processes [1]. It is however widely believed that soon, when
higher energies are experimentally accessible, new phenomena may emerge that require a
description that goes beyond the standard model. Among the various the possibilities, is the
possibility that a composite nature of the standard model constituents may be revealed [2]
and a possible failure of locality [3, 4]. It is possible that the underlying physics is nonlocal
at shorter distances which could be a result of composite structure of particles, or granularity
of space-time, or underlying noncommutative structure of space-time [5]. With a nonlocal
interaction, often goes causality violation that can arise because the interaction region, en-
closes points separated by a space-like interval. Causality violation has been studied in the
context of non-local [6, 7] and non-commutative quantum field theories [8–10]. It has in
fact been suggested [6, 7, 11, 12] that non-local quantum field theories [13, 14] may indeed
serve as effective field theories for a deeper/more fundamental theory such as a composite
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model; and the former indeed show causality violation [6, 7, 14]. An effective tool to study
causality has been developed by Bogoliubov and Shirkov [15] and has been in particular
employed for the causality violation in non-local [6, 7] and non-commutative QFT’s [10].
We wish to consider the following question: in view of the possible composite nature of ele-
mentary particles, leading to extended structures, will these leave an observable effect in the
form of a violation of causality and locality that can be detected? A similar question regard-
ing a violation of the Pauli exclusion principle on account of the compositeness of particles
has been earlier addressed to [16–18]. This question is particularly interesting since should
there be a signal of CV, it will be detected long before an explicit knowledge of composite
structure is known. In fact, it is has been suggested [6, 7] that the unknown physics at high
energy scales (�) from a possible source can effectively be represented in a consistent way
(a unitary, gauge-invariant, finite (or renormalizable) theory) by a nonlocal theory at ener-
gies lower than �, but higher than the present ones. In other words, the nonlocal standard
model, with a parameter �, can serve as such an effective field theory and will afford a
model-independent way of consistently reparametrizing the effects beyond standard model.
In this model, one finds that there is but a small CV at low energies, which grows rapidly as
energies approach � and beyond these, the fundamental theory is expected to take over and
presumably it leads to no CV again. The aim of the present work is to approach this question
in a model-independent way in connection with a composite structure of SM constituents.

2 Preliminary

2.1 Definition of the Problem

Suppose that the presently known standard model particles are a composite of a set of
finer constituents. Suppose that these underlying constituents belong to a local causality-
preserving fundamental theory. Suppose, further that at lower energies, one only observes
the composite bound states and their scattering processes. These bound state particles are ex-
tended objects. A priori, their interaction is expected to be non-local. A nonlocal covariant
interaction has, at a given instant, interaction spread over a region in space, which there-
fore contains spatially separated points. An obvious question arises: will the interactions
of the composite theory be such that causality is preserved by this low-energy theory? We
need the fundamental theory for energy scales � �, and for energy scales � �, we have
the set of composite particles described by the “derived” theory. Then the question, para-
phrased differently is, will the phase transition (should there be one) from the fundamental
to the composite be causality preserving or it could lead to a breakdown of causality at short
enough distances?

2.2 Definition of the System

Let, for simplicity, the fundamental theory, denoted by F , be characterized by a single cou-
pling constant g. For the purpose of formulation of the Bogoliubov-Shirkov (BS) criterion
of causality, we shall need to formulate a theory with a variable coupling g(x). Let the low-
energy derived theory be characterized by its own coupling constant λ ≡ λ[g], which for
identical reasons, we shall need to allow to depend on space-time: λ = λ(x). We shall as-
sume, for simplicity, that the derived theory, denoted by C , is completely described by its
scattering states: i.e. we shall assume that the model admits no bound states. A scattering
state of the derived theory can be looked upon from two different point of views:
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• a scattering state, as t → ±∞, is a state of a certain set of non-interacting composite
particles of the low energy theory with certain momenta, polarizations etc.

• a scattering state, as t → ±∞, is a (complicated) configuration of fields of the fundamen-
tal theory.

3 Causality Formulation for a Theory without a Well-Defined S-Matrix

Bogoliubov and Shirkov have shown [15] that S-operator is causal only if it satisfies,

δ

δg(x)

[
δS

δg(y)
S†

]
= 0, x <∼ y. (1)

(Here, x < y ⇐⇒ x0 < y0 and x ∼ y ⇐⇒ (x −y)2 < 0). The condition is obtained from the
primary meaning of causality that a disturbance does not propagate outside the forward light-
cone (the disturbance considered is that in g(x)1), and is independent of any specific field
theory formulation. The BS causality criterion holds for a theory for which an S-operator
is defined. For a theory such as QCD, some of the matrix elements of the S-operator may
not exist on account of the infrared divergences. It is nonetheless true that an alternate for-
mulation in terms of the U -operator (i.e. U(−T ,T ′)) can be given. This is so because, the
U -operator is unitary as much as the S-operator and the BS criterion depends on two points
x, y with x <∼ y which can always be chosen to be such that they both lie in (−T ,T ′). The
relation would then read

δ

δg(x)

[
δU

δg(y)
U †

]
= 0, x <∼ y; −T < x0, y0 < T ′. (2)

It is possible to alternately formulate the causality condition in terms of the following
choices of the couplings. [This way results when we suitably integrate (2) over x0 < 0 and
y0 > 0.] In this approach, we make a comparison of the following two neighboring theories
in the coupling constant space:2

1. Fundamental theory F ′: Coupling constants = g′
2 (a constant value) for x0 > 0 and g1

(a constant value) for x0 < 0. Corresponding derived theory is C′.
2. Fundamental theory F ′′: Coupling constants = g′′

2 (a constant value) for x0 > 0 and g1

(the same constant value) for x0 < 0. Corresponding derived theory is C′′.

All the coupling constants are (chosen to be) space-independent. It suffices for our purpose
that g′

2 differs infinitesimally from g1 and g′′
2 . (We can in fact assume that the infinitesimal

change from g1 to g2 is carried out adiabatically and in an infinitesimal time.) Then, we can
alternately formulate3 the causality condition as,

U [g1, g
′′
2 ;−T ,T ′]U †[g1, g

′
2;−T ,T ′] is independent of g1. (3)

1One may consider varying g(x) an unphysical operation, but one can look alternately upon varying g(x) at

a point x0 as insertion of a (specific) local operator ∂LI
∂g(x)

at x0 and study the propagation of its effects.

2The idea of varying the coupling with time over all space is not an entirely unfamiliar one: it is also employed
in the LSZ formulation.
3For a simpler and intuitive understanding of the causality condition in either form, see e.g. S.D. Joglekar,
hep-th/0601006.
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This alternate formulation makes mathematics simpler, though it may lead to an unusual-
looking Physics.
In the following, we shall adopt a “reductio ad absurdum” approach: We shall let, if possible,
that the theory C be causality-preserving and deduce the consequences of causality of F for
C and analyze these.

4 Relations between the Derived Theory and the Fundamental Theory

4.1 Relations between Coupling Constants

The coupling constant λ is a function of g. If we allow a space-time dependent coupling,
then λ = λ[g]. A small change4 δg(x) in the coupling g(x) about g(x) = g = constant, will
cause a change in λ(x) as given by5 δλ(z) = ∫

dy δλ(z)

δg(y)
|g(y)=gδg(y). For the BS criterion of

causality of (2), we need to know the impact of a localized change g(x) → g(x) + δg(x) ≡
g(x) + εδ4(x − x̃) on the function λ(x). Now, if causality is valid, λ(x) cannot be affected
for any x0 < x̃0. Assuming that the theory has T -invariance,6 λ(x) cannot be affected for
any x0 > x̃0. Thus, this together with causality requires that,

λ(x) → λ(x) + Cεδ4(x − x̃) + terms having finite order derivatives of delta function.

Thus,

δλ(z)

δg(y)
= Cδ4(z − y) + terms having finite order derivatives of delta function.

Then, for a constant small change δg = ε, for all x0 > 0, [i.e. δg(x) = εθ(x0)]; we find,

δλ(z) =
∫

d4y
δλ(z)

δg(y)
δg(y)

=
∫

d4y{Cδ4(z − y) + derivatives of delta function}εθ(y0)

= C ′εθ(z0) for z0 > 0.

We shall denote by λ′
2 = λ[g′

2, g1] and λ′′
2 = λ[g′′

2 , g1].

4.2 Relation between States

We shall work in the interaction picture of C . Let the derived theory C′ have as incoming
states7 {|c̃m(λ1,−T )〉} which, as −T → −∞, represents scattering states with a number of

4For the argument presented subsequently, we shall go back to a general space-time dependent coupling and
not confine ourselves to the specific couplings presented in the previous section.
5We shall assume the existence and non-vanishing of δλ(z)

δg(y)
|g(y)=g . By translational invariance, this quantity

is a function of (z − y) and is independent of the point z as such.
6We shall need that the theory F with a variable coupling has a T -invariance. This is possible to formulate a
time-reversal transformation for a theory with a variable g(x): we need to define the action of time-reversal
as T g(x, t)T −1 = g(x,−t).
7For technical simplicity, we shall assume that the set of states is countably infinite.
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free composite particles. We shall keep T finite and will let T → ∞ only at the end of the
argument. Evidently, as −T → −∞, |c̃m(λ1,−T )〉 depends on λ1 only through the self-
interaction of each individual non-interacting particle in the state. Let H̃ denote the Hilbert
space of states of C′. Then the hypothesis that the scattering states of C′ forms a complete
set implies that the set {|c̃m(λ1,−T )〉} spans H̃: H̃ ≡ sp{|c̃m(λ1,−T )〉}. We shall denote by
H, the Hilbert space of states of F ′ (and likewise for F ′′). Consider a state |c̃m(λ1,−T )〉 ∈
H̃ in the interaction picture. On physical grounds, we know that there is a corresponding
state of F ′ in the interaction picture, denoted by |cm(g1,−T )〉. We note that H can, in
addition, have states linearly independent of the states {|cm(g1,−T )〉}. We augment this set
to complete an orthonormal basis {|cm(g1,−T )〉}∪ {|βn(g1,−T )〉} ≡ {|αp(g1,−T )〉} for H.
We shall call the span of {|cm(g1,−T )〉} by Ĥ ⊂ H. A similar discussion holds for F ′′. Let
us now consider the time-evolution, from t = −T to t = T ′, of a single particle state of
C′′ denoted by |s̃p(λ1,−T )〉, which belongs to the basis of H̃. The unitary time evolution
operator Ũ [λ1, λ

′′
2;−T ,T ′] as applied to the state leads to

Ũ [λ1, λ
′′
2;−T ,T ′]|s̃p(λ1,−T )〉 = |s̃p(λ′′

2, T
′)〉 ∈ H̃. (4)

This state is a single particle state of slightly different mass, on account of a slightly dif-
ferent self-energy, and interacts with a coupling λ′′

2 . We shall also introduce interaction
picture states |d̃m(λ′′

2, T
′)〉. These states are at t = T ′ and as T ′ → ∞ consist of a set of

non-interacting (but self-interacting) particles of a slightly different mass and coupling con-
stant λ′′

2 . These are analogues of the “out” states. We shall assume that these also span H̃.
We shall further make a convention: Under time reversal, the quantum numbers of particles
in the state |c̃m(λ1,−T )〉 become those of 〈d̃m(λ1, T

′)|. Now, consider an exclusive process
in C′′. The magnitude of the quantum mechanical amplitude for it, as seen from C′′and F ′′

are identical, as these are, in principle, experimentally observable:

|ũnm| ≡ |〈d̃n(λ
′′
2, T

′)|Ũ [λ1, λ
′′
2;−T ,T ′]|c̃m(λ1,−T )〉|

≡ |〈dn(g
′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]|cm(g1,−T )〉| ≡ |unm|. (5)

Here, we have introduced states |dn(g
′′
2 , T ′)〉 in H analogous to |d̃n(λ

′′
2, T

′)〉 in H̃. We
note that U here is the U -matrix in the interaction picture of F ′′, as the set of states
{|cm(g1,−T )〉} evolve according to the interaction Hamiltonian H′

I (g) (in the interaction
picture) of the F ′′.

First we note that on account of unitarity of Ũ and (5),

1 =
∑

n

|〈d̃n(λ
′′
2, T

′)|Ũ [λ1, λ
′′
2;−T ,T ′]|c̃m(λ1,−T )〉|2

=
∑

n

|〈dn(g
′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]|cm(g1,−T )〉|2 (6)

and

1 =
∑
m

|〈d̃n(λ
′′
2, T

′)|Ũ [λ1, λ
′′
2;−T ,T ′]|c̃m(λ1,−T )〉|2

=
∑
m

|〈dn(g
′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]|cm(g1,−T )〉|2. (7)
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So, the unitarity of U implies,

〈dn(g
′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]|βm(g1,−T )〉 = 0,

(8)
〈βn(g

′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]|cm(g1,−T )〉 = 0.

The relations (8) implies that U is a block-diagonal matrix. The unitarity of U then implies
that the block corresponding to the subspace Ĥ, viz. Û , is also unitary. We shall now attempt
relate these further. In this connection, we recall a result for a finite dimensional matrices:

Lemma Let U and U ′ be two N × N unitary matrices satisfying: |u′
ij | = |uij |; 1 ≤ i,

j ≤ N . Then, there exist phases {θi : i = 1,2, . . . ,N} and {φi : i = 2, . . . ,N} such that
u′

ij = uij exp [i(θi + φj )] : 1 ≤ i, j ≤ N with φ1 ≡ 0.

Proof Let the diagonal elements of U ′ and U be related by: u′
ii = exp (i�i)uii . We de-

fine U ′′ by u′′
ij = exp (−i�i)u

′
ij . Then, u′′

ii = uii . Now U ′′ is unitary and thus, a priori, has
N2 independent parameters. The information on moduli of elements constitutes (N − 1)2

independent conditions, corresponding to an (N − 1) × (N − 1) dimensional submatrix;
the rest of the (2N − 1) moduli being determined by relations implying that the norm of
each row and column is unity. The relations u′′

ii = uii imply additional N relations on the
phases on uii . This leaves N2 − (N − 1)2 − N = N − 1 free parameters. The phases of
u′′

1j , 2 ≤ j ≤ N are unconstrained by |u′′
ij | = |uij | : 1 ≤ i, j ≤ N and u′′

ii = uii and we de-
fine u′′

1j = u1j exp (iφj ), 2 ≤ j ≤ N . Then, there are no free parameters and must lead to a
unique U ′′. Now, U ′′ specified by u′′

ij = uij exp (iφj − iφi), 1 ≤ i, j ≤ N (φ1 ≡ 0) is such
a solution. This together with u′′

ij = exp (−i�i)u
′
ij leads to the result; with the definition

�i − φi = θi .

Thus, in view of the unitarity of Ũ , and Û and (5), we write,

〈d̃n(λ
′′
2, T

′)|Ũ [λ1, λ
′′
2;−T ,T ′]|c̃m(λ1,−T )〉

≡ 〈dn(g
′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]|cm(g1,−T )〉 × exp (iθ ′′

n + iφm). (9)

We shall assume that F and C are have time-reversal invariance and derive the consequences.
Under time reversal, we know then that,

〈β|S|α〉 = 〈T α|S|T β〉 (10)

where |T β〉 is the state obtained by time-reversing the quantum numbers of the state |β〉. In
this case, it would imply, keeping in mind our choice of definitions,

〈d̃n(λ
′′
2, T

′)|Ũ [λ1, λ
′′
2;−T ,T ′]|c̃m(λ1,−T )〉

= 〈d̃m(λ1, T )|Ũ [λ1, λ
′′
2;−T ,T ′]|c̃n(λ

′′
2,−T ′)〉. (11)

We write a similar relation for F . Putting T ′ = T (or equivalently, noting that the matrix
elements are insensitive to T ′ and T ), we find,

φp(λ2, λ1) = θp(λ1, λ2). (12)

�
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5 Consequence of Causality of F for C

We shall assume that the fundamental theory F is causal and deduce the consequences for
the derived theory C(C′, C′′). The causality of F implies that

U [g1, g
′′
2 ;−T ,T ′]U †[g1, g

′
2;−T ,T ′]

is independent of g1. Hence,

Mnm ≡ 〈dn(g
′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]U †[g1, g

′
2;−T ,T ′]|dm(g′

2, T
′)〉

is also independent of g1 since the state vectors 〈dn(g
′′
2 , T ′)| and |dm(g′

2, T
′)〉 are indepen-

dent of g1 with g′
2 and g′′

2 fixed. We shall re-express Mnm in terms of the matrix elements
of the derived theory C(C′, C′′) and deduce the consequences. We note,

Mnm = 〈dn(g
′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]U †[g1, g

′
2;−T ,T ′]|dm(g′

2, T
′)〉

=
∑

p

〈dn(g
′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]|αp(g1,−T )〉

×〈αp(g1,−T )|U †[g1, g
′
2;−T ,T ′]|dm(g′

2, T
′)〉 (13)

=
∑

p

〈dn(g
′′
2 , T ′)|U [g1, g

′′
2 ;−T ,T ′]|cp(g1,−T )〉

×〈cp(g1,−T )|U †[g1, g
′
2;−T ,T ′]|dm(g′

2, T
′)〉 (14)

=
∑

p

〈d̃n(λ
′′
2, T

′)|Ũ [λ1, λ
′′
2;−T ,T ′]|c̃p(λ1,−T )〉 exp [−i(θ̃ ′′

p − θ̃ ′
p)]

×〈c̃p(λ1,−T )|Ũ †[λ1, λ
′
2;−T ,T ′]|d̃m(λ′

2, T
′)〉 exp−[i(θ ′′

n − θ ′
m)] (15)

≡ M̃nm(λ′′
2, λ

′
2, λ1). (16)

In the 3rd step, we have employed (8) and in the second step, we have employed the closure
relation for F .

In the above, θ ′′
n ≡ θn(λ

′′
2, λ1), θ ′

m ≡ θm(λ′
2, λ1), and θ̃ ′′

p ≡ θp(λ1, λ
′′
2) etc. Thus, the ex-

pression (15) is independent of λ1:

∂M̃nm(λ′′
2, λ

′
2, λ1)

∂λ1
= 0. (17)

6 Analysis of Causality Condition

We shall now analyze the condition (17) obtained as an implication of causality of F . For
this purpose, we shall find it useful to Taylor-expand θn as follows:8

θn(λ
′′
2, λ1) = θn(λ

′
2, λ1(0)) + βn�1 + γn�2 + δn�1�2 + · · ·

8Throughout, we have employed only the infinitesimal variations in the couplings. These are sufficient to
determine the first order partial derivatives with respect to each λ1 and λ2. Hence, we shall content ourselves
with expansion only upto O(�1�2).
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≡ αn + βn�1 + γn�2 + δn�1�2 + · · · ,
θm(λ′

2, λ1) = αm + βm�1 + · · · .
(18)

Here, �1 ≡ λ1 − λ1(0); �2 ≡ λ′′
2 − λ′

2; β,γ, δ refer to appropriate partial derivatives at
(λ′

2, λ1(0)) and λ1(0) is some value near λ1.
We note that if

θn(λ2, λ1) is a function only of its first argument (I)

then, (θ̃ ′′
p − θ̃ ′

p) ≡ θp(λ1, λ
′′
2) − θp(λ1, λ

′
2) is zero and (θ ′′

n − θ ′
m) ≡ θn(λ

′′
2, λ1) − θm(λ′

2, λ1)

is independent of λ1. Also, we can then carry out the sum over p using the completeness
relation and find that the independence from λ1 of

M̃nm(λ′′
2, λ

′
2, λ1)

= 〈d̃n(λ
′′
2, T

′)|Ũ [λ1, λ
′′
2;−T ,T ′]Ũ †[λ1, λ

′
2;−T ,T ′]|d̃m(λ′

2, T
′)〉 exp−[i(θ ′′

n − θ ′
m)] (19)

for all m,n implies Ũ [λ1, λ
′′
2;−T ,T ′]Ũ †[λ1, λ

′
2;−T ,T ′] is independent of λ1. This condi-

tion is indeed necessary for causality of C . In fact, in this case, we can rewrite9

〈d̃n(λ2, T
′)|Ũ [λ1, λ2;−T ,T ′]|c̃m(λ1,−T )〉

≡ 〈dn(g2, T
′)|U [g1, g2;−T ,T ′]|cm(g1,−T )〉 exp (iθn(λ2, λ1) + iθm(λ1, λ2)) (20)

as,

〈d̃∗
n(λ2, T

′)|Ũ [λ1, λ2;−T ,T ′]|c̃∗
m(λ1,−T )〉

≡ 〈dn(g2, T
′)|U [g1, g2;−T ,T ′]|cm(g1,−T )〉 (21)

by redefining states by absorbing phases:

(|c̃∗
m(λ1,−T )〉 = e−iθm(λ1)|c̃m(λ1,−T )〉)

etc. We note that this redefinition of the states is meaningful and compatible with causality
when θn is independent of its second argument. If on the other hand, θn is dependent on
its second argument (excepting a possibility below), we cannot absorb a phase in a manner
compatible with causality: a state |c̃∗

m〉 at t = −T cannot be made to depend on the value
of coupling λ2 it would have at a later time t > 0.

We can, in fact, liberalize somewhat the above condition by requiring that,

βn = β and δn = 0, ∀n. (II)

In this case,

(θ̃ ′′
p − θ̃ ′

p) ≡ θp(λ1, λ
′′
2) − θp(λ1, λ

′
2)

= β�2 + · · · (22)

9We have dropped primes on λ2.



2832 Int J Theor Phys (2008) 47: 2824–2834

is independent of λ1 and does not depend also on p and thus comes out of the summation
in (15). The summation in (15) can be carried out using the completeness relation. Also,
(θ ′′

n − θ ′
m) ≡ θn(λ

′′
2, λ1) − θm(λ′

2, λ1) is still independent of λ1. Thus, the entire discussion
proceeds as before: in particular, as a little analysis shows, the phases can again be absorbed
into the definition of states in a manner compatible with causality.

While we shall not provide the general analysis of (17), we shall establish examples of a
few specific sufficient conditions for causality violation. (These are simple conditions that,
in fact, contradict (I) or (II) above.) We can easily verify the following results:

1. There is causality violation if (i) for some n, δn �= 0 and (ii) βn = βm, ∀n,m.
2. There is causality violation if there be m �= n such that M̃nm(λ′′

2, λ
′
2, λ1) �= 0, when eval-

uated to O(�), and βm �= βn.

Proof We shall let, if possible, C be causal. We can then write,

Ũ [λ1, λ
′′
2;−T ,T ′] = Ũ [λ′′

2;0, T ′]Ũ [λ1;−T ,0]. (23)

Then, we can write the expression (15) as,

M̃nm(λ′′
2, λ

′
2, λ1) =

∑
p

〈d̃n(λ
′′
2,0)|c̃p(λ1,0)〉 exp [−i(θ̃ ′′

p − θ̃ ′
p)]

×〈c̃p(λ1,0)|d̃m(λ′
2,0)〉 exp−[i(θ ′′

n − θ ′
m)]

≡ 〈d̃n(λ
′′
2,0)|X |d̃m(λ′

2,0)〉 exp [−i(θ ′′
n − θ ′

m)] (24)

where X ≡ ∑
p |c̃p(λ1,0)〉〈c̃p(λ1,0)| exp [−i(θ̃ ′′

p − θ̃ ′
p)]. We shall now expand the quantities

involved to the first order in the infinitesimals as in (18). In addition, we note that to the
zeroth order in �2 (i.e. λ′′

2 − λ′
2 = 0), we have, (θ̃ ′′

p − θ̃ ′
p) = 0 and the completeness relation

leads to X = 1. We further define,

〈d̃n(λ
′′
2,0)|d̃m(λ′

2,0)〉 = δnm + iηnm�2 + · · · . (25)

�

Proof of (i) We define δ0 ≡ max{|δn|}; and let ±δ0 = δq for some q . We now have,

(θ̃ ′′
p − θ̃ ′

p) ≡ θp(λ1, λ
′′
2) − θp(λ1, λ

′
2)

= β�2 + δp�1�2 + · · · (26)

and thus,

X ≡
∑

p

|c̃p(λ1,0)〉〈c̃p(λ1,0)| exp [−i(θ̃ ′′
p − θ̃ ′

p)]

= exp (−iβ�2)
∑

p

|c̃p(λ1,0)〉〈c̃p(λ1,0)| exp [−i(δp�1�2)]

= exp (−iβ�2)

[
I − i�1�2

∑
p

|c̃p(λ1,0)〉〈c̃p(λ1,0)|δp

]
. (27)
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Thus,

exp (iβ�2)〈d̃q (λ
′′
2,0)|X |d̃q (λ

′
2,0)〉

= 1 + iηqq�2 − i�1�2

∑
p

δp|upq |2 + · · · (28)

where upq ≡ 〈d̃q (λ2,0)|c̃p(λ1,0)〉 (we can ignore primes on λ2 in this term). The multiplica-
tive exponential factor in (24) becomes:

exp (−iγq�2 − iδq�1�2 + · · ·) ≈ 1 − iγq�2 − iδq�1�2 + · · · .
Thus,

M̃qq = 1 + iηqq�2 − iγq�2 − iδq�1�2 − i�1�2

∑
p

δp|upq |2 + · · ·

= 1 + iηqq�2 − iγq�2 − i�1�2

∑
p

[δq + δp]|upq |2 + · · · . (29)

In view of the fact that either δp + δq ≥ 0, ∀p or δp + δq ≤ 0, ∀p the last term is necessarily
non-vanishing and dependent on �1.10 �

Proof of (ii) Consider the matrix element

M̃nm(λ′′
2, λ

′
2, λ1) ≡ 〈d̃n(λ

′′
2,0)|X |d̃m(λ′

2,0)〉 exp−[i(θ ′′
n − θ ′

m)] �= 0 (30)

for n �= m. To the first order in the infinitesimals, the nonzero matrix element

〈d̃n(λ
′′
2,0)|X |d̃m(λ′

2,0)〉
is independent of �1. The multiplicative phase factor,

exp−[i(θ ′′
n − θ ′

m)] = exp{−i(αn − αm) − i(βn − βm)�1 − iγn�2}
is necessarily dependent on �1, thus implying causality violation. �

7 Additional Comments

We comment in a qualitative way upon how a phase factor depending on both values of
the coupling can arise. Suppose that the derived theory C is actually correctly described by
a nonlocal covariant theory with a finite non-zero non-locality scale � ∼ 1/�. Since the
theory is covariant, it is also non-local in time. We write,

Ũ (λ1, λ2;−T ,T ′) = Ũ (λ2;�,T ′)Ũ(λ1, λ2;−�,�)Ũ(λ1;−T ,−�) (31)

where the first and the third factors on the right hand side depends only on one value of
the coupling due to finite size of non-locality in time. The second factor however depends

10There is the obvious exception that δp = −δq for every such p such that upq �= 0; and this has to be valid
for each such q for which δq = ±δ0.
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on both couplings because in this time-interval (−�,�), time evolution depends on both
values of the coupling λ. On the other hand, the fundamental theory, being local and causal,
however has no such analogue. The matrix Ũ (λ1, λ2;−�,�) can then give rise to phases
depending on both couplings in relation (9).

Naively, one may expect that if the fundamental theory is causal, the derived theory
should be so. Examples are however known where the diagrams of the fundamental theory
are associated with a different weight in the actual phenomenology. For example, OZI rule in
hadronic phenomenology gives a suppression of a subset of the QCD diagrams. While such
a possibility is distinct from what is discussed in this work, generally such a modification
of the amplitudes within the fundamental theory may alter the underlying properties of the
fundamental theory such as causality.

References

1. Yao, W.-M., et al.: Reviews of particle properties. J. Phys. G 33, 1 (2006)
2. Harari, H.: Phys. Rep. 104, 159 (1984)
3. Bourrely, C., Khuri, N.N., Martin, A., Soffer, J., Wu, T.T.: hep-ph/0511135
4. Khuri, N.N.: hep-ph/9512386
5. Szabo, R.J.: Phys. Rep. 278, 207 (2003)
6. Joglekar, S.D., Jain, A.: Int. J. Mod. Phys. 19, 3409–3425 (2004)
7. Joglekar, S.D.: hep-th/0601006
8. Chaichian, M., Nishijima, K., Tureanu, A.: Phys. Lett. B 568, 146–152 (2003)
9. Greenberg, O.W.: Phys. Rev. D 73, 045014 (2006)

10. Haque, A., Joglekar, S.D.: hep-th/0701171
11. Joglekar, S.D.: J. Phys. A 34, 2765 (2001)
12. Joglekar, S.D.: Int. J. Mod. Phys. A 16, 4489–4497 (2001)
13. Evens, E.D., et al.: Phys. Rev. D 43, 499 (1991)
14. Kleppe, G., Woodard, R.P.: Nucl. Phys. B 388, 81 (1992)
15. Bogoliubov, N.N., Shirkov, D.V.: In: Introduction to the Theory of Quantized Fields, pp. 200–220. Wiley,

New York (1980)
16. Akama, K., et al.: Phys. Rev. Lett. 68, 1826 (1991)
17. Greenberg, O.W., Mohapatra, R.N.: Phys. Rev. Lett. 59, 2507 (1987). Erratum-ibid. 61, 1432 (1988)
18. Greenberg, O.W., Mohapatra, R.N.: Phys. Rev. Lett. 62, 712 (1989). Erratum-ibid. 62 1927 (1989)


	Composite Structure and Causality
	Abstract
	Introduction
	Preliminary
	Definition of the Problem
	Definition of the System

	Causality Formulation for a Theory without a Well-Defined S-Matrix
	Relations between the Derived Theory and the Fundamental Theory
	Relations between Coupling Constants
	Relation between States

	Consequence of Causality of F for C
	Analysis of Causality Condition
	Additional Comments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


